

[Patange, 5(4): April 2018] DOI- 10 10.5281/zenodo.1211485

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES DESIGN, SYNTHESIS AND CHARACTERISATION OF SOME SEMICARBAZONE AND THIOSEMICARBAZONE DERIVED FROM 3-PHENYLQUINAZOLINE-2, 4(1H, 3H)-DIONE

ISSN 2348 - 8034

Impact Factor- 5.070

Ashok N. Patange^{*1}, Ramesh G.Paloti², Ramesh N.Zade³, Kushal M.Mude⁴ & Bhupesh M.Mude⁵ ^{*1}Department of Chemistry, Bhavan's College, Munshi Nagar, Andheri (West), Mumbai, Maharashtra 400058, India

²Department of library Science, Bhavan's College, Munshi Nagar, Andheri (West), Mumbai, Maharashtra 400058, India

³Department of Chemistry, Siddharat College, Fort, Mumbai, Maharashtra 40001, India ⁴Department of Physics, Bhavan's College, Munshi Nagar, Andheri (West), Mumbai, Maharashtra 400058, India

⁵Department of Physics, RamnarinRuia College, Matuga(East), Mumbai, Maharashtra 400019, India

ABSTRACT

This paper presents the synthesis and characterizations of some semicarbazone and thiosemicarbazone derivatives of 3-phenylquinazoline-2,4(1H,3H)-dione. All compounds reported here had been characterised by¹H NMR and IR spectral studies and elemental analysis. semicarbazone and thiosemicarbazone derivatives of 3-phenylquinazoline-2,4(1H,3H)-dionewere prepared by treating mixture of phenyl isocyanates and anthanilic acid in ethanol to get 3-phenylquinazoline-2,4(1H,3H)-dionewhich will then condense with substituted4-chloro/bromo/iodoAcetophenones in ethanolto form the chalcones .this chalcones were treated with semicarbazide and thiosemicarbazide in ehanol to get semicarbazone and thiosemicarbazone derivatives of 3-phenylquinazoline-2,4(1H,3H)-dione to explore the biological activities and importance as ligands for various transition metal complexes.

Keywords: *Schiff'sbase, Semicarbazone, Thiosemicarbazone,3-phenylquinazoline-2,4(1H,3H)-dione*

I. INTRODUCTION

Many quinazoline derivatives possessing wide range of biological activities are reported in the literature [1]. The antimalarial activity of febrifuge spurred the synthesis and testing of a number of quinoazolines derivatives and this resulted in the claim of patents for potent anti-materials.valenti[2] observed anti-malerial activity with lesstoxicity in 4-alkylamino quinazolines and this leads to synthesize of several such compounds[3-6].several 2,3 disubstituited4-keto quinazolines are found active against plasmodium,gallinaceum.some quinazolines are known for their usefulness other than medicinal have also been reported.2,-dicholoro and 2,4,6-trichloroquinazolines were used as dye fastening agentsby Saftien[7].natural 4-quinazolones forms a small but an important group of alkaloid and have been isolated from variety of plants. The prominent representatives of this group were erborine, febrifugine, evodiamine and rutacecrpine which contain a 4-keto quinazolinenucleus. Taking into consideration all above points and especially the important of quinazoline moiety in the present investigation we have synthesizes various semicarbazone and thiosemicarbazonederivatives of 3-phenylquinazoline-2,4(1H,3H)-dionein order to explore the biological activities and importance as ligands for various transition metal complexes.

II. EXPERIMENTAL

All chemicals used were of A.R.grade purchased from S.D Fine chemicals (Mumbai) and were used further purification. This experimental part divided in to four parts,

10

A) **Preparation of 3-phenylquinazoline-2,4(1H,3H)-dione** (L_1) :In the three necked round bottom flask a mixture of anthranilic acid(0.1M) and Phenyl isocyanate (0.11M) in50mL ethanol were taken and stirred for one hour and the reaction mass was refluxed on water bath for 2-3 hrs. After the reaction reached completion (monitored by TLC), the crude product obtained was recrystallized with ethanol.

[Patange, 5(4): April 2018]

DOI- 10 10.5281/zenodo.1211485

B) Preparation of Chalcones of 3-phenylquinazoline-2,4(1H,3H)-dione(C-1toC-4) from substituted acetophenone:

ISSN 2348 - 8034

Impact Factor- 5.070

In the three necked round bottom flask a mixture of3-phenylquinazoline-2,4(1H,3H)-dione[9-12] (0.1M) in50mL ethanol were taken and stirred for one hour .Meanwhile the solution of 20% caustic soda solution (30ml) mix with and 4-chloro/bromo/iodoacetophenone(0.11M) was prepared, Above prepared solution was added slowly to ethanolic solution of 3-phenylquinazoline-2,4(1H,3H)-dionemaintaining temp.15-20°c, then the reaction mass was refluxed on water bath for 2-3 hrs. After the reaction reached completion (monitored by TLC), the mixture was cooled on ice salt bath. It was filtered and washed with water &Chalcones of 3-phenylquinazoline-2,4(1H,3H)-dione[C-1 to C-4] obtained was recrystallized with ethanol.

- C) Preparation of hydrazinecarbothiamide (L_1T) of (2E)-2-[-(4-substituited Phenyl)-2-oxoehylidene]-3-2,3dihydroquinazoline-4(1H)-one : The chalcones[C-1 to C-4] [13-14] (0.01mol) was added to 30 ml of THF & thiosemicarbazide (0.012mol) was added along with sodium acetate (5gm) reaction mixture was then refluxed on water bath for 2-3 hrs. After the reaction reached completion (monitored by TLC); the mixture was cooled on ice-salt mixture, it was than filtered and recrystallized with alcohol.
- D) **Preparation of hydrazine-carboxamide** (L_2C) of (2E)-2-[-(4-substituited Phenyl)-2-oxoehylidene]-3-2,3dihydroquinazoline-4(1H)-one :The mixture of chalcone[C-1 to C-4] (0.01mol) &semicarbazide hydrochloride (0.012mol) was added to 50ml THF. To that sodium acetate (5gm) was added. The reaction mixture was refluxed on water bath for 2-3 hrs. After completion of reaction (monitored by TLC); the reaction mixture was cooled, filtered & the product obtained was recrystalized by alcohol. The crystalized powder was further subjected to Silicagel column chromatograpphy (2% EtoAc- Hexane) to get purified product.

Reaction Scheme

Schme-1Preparation 3-phenylquinazoline-2,4(1H,3H)-dione(L₁)

11

Schme-2Preparation of (2E)-2-[-(4-substituited Phenyl)-2-oxoehylidene]-3-2,3dihydroquinazoline-4(1H)-one(C-1 to C-4)Where R = H, Cl, Br, I

Schme-3 Preparation of (2E)-2-[-(4-substituited Phenyl)-2-oxoehylidene]-3-2,3dihydroquinazoline-4(1H)-one(L_1T)& (L_1C)

Where R = H, Cl, Br, I and X=S, O

III. RESULT AND DISCUSSION

The compounds $(L_1T \& L_1C)$: In the IR spectrum[15] of ligand (L_1T) bands corresponding to $-NH_2\&$ -NH groups appeared at 3454 and 3260cm⁻¹respectively.thebands corresponding to $_v(C = S)$ and $_v(C=N)$ groups appeared at 814 &1583 cm⁻¹.In(L_1C): the band corresponding $_v(C=O)$ appeared at 1708 cm⁻¹.In the ¹H NMR spectrum of $(L_1T \& L_1C)$ the most common NMR multiplets for Aromatic rings protons are found to be resonating around $\delta 6.9-\delta 8.4$ whereas the broad singlet for $>NH \& -NH_2$ group protons appeared around $\delta 3.3$ - $\delta 3.6$. asharp singlet peak for olefinic protons (>C=C-H) group in are observed in the range of $\delta 7.6$ - $\delta 7.8$ while >NH quinazoline ring singlet appears at $\delta 9.8$. The distinguishing singlet peak around $\delta 10.2$ (>C=N-group) azomethine protons singlet was shifted to downfield. The ¹H NMR and FTIR spectrums of synthesized compounds L_1 , C-1,C-2, L_1 Tand L_1C were reported in Table -1**&2**

[Patange, 5(4): April 2018] DOI- 10 10.5281/zenodo.1211485

ISSN 2348 - 8034 Impact Factor- 5.070

Figure: 1 IR & NMR spectrum of $(L_1T \& L_1C)$

Table-1: ¹ HNMR	(400 MHz,	$CDCl_3$) δ_{ppm} :-
----------------------------	-----------	------------------------------

Sr. No	compounds	-NH2 ðppm	>NH or >SH ðppm	OlefinicProton 1H singlet δppm	>NH quinazoline ring singlet δppm	Aromatic ring 8H Proton δppm
1	L1					7.0-7.9
2	C-1			7.8	9.8	6.9-7.7
3	C-2			7.6	9.8	7.0-8.1
4	L1T	3.6	10.4	7.7	9.8	7.7-8.2
5	LIC	3.6	10.4	7.6	9.8	7.0-7.8

13

[Patange, 5(4): April 2018] DOI- 10 10.5281/zenodo.1211485

ISSN 2348 - 8034 Impact Factor- 5.070

Table-2: FTIR Spectrum(in KBr):								
Sr. No	compounds	-NH2,>NH Stretching frequency incm-1	(>C=S) Stretching frequency incm-1	(>C=O) Stretching frequency incm-1	(>C=N) Stretching frequency incm-1	Aromatic ring Stretching frequency incm-1		
1	L ₁	3400-3250		1673		1603		
2	C-1	3427-3279		1655		1591		
3	C-2	3330-3185		1680		1595		
4	L ₁ T	3300-3195	811	1655	1580	1603		
5	L ₁ C	3227-3161		1668	1558	1600		

REFERENCES

- 1. F.W wiselouge "survey of antimalarial drug 1941-45" Edward brothers , Ann. Arbor, Michigan (1946).
- 2. Valenti, Biochem. Terap. Sper., 17, 84, (1930).
- 3. Sheryl et al ,J.Am. Chem. Soc. 68. 1299-1301. (1946).
- 4. Prince and Curtin, .Am.Chem.Soc.68.1305.(1946).
- 5. Christenxen and Tomisek, .Am.Chem.Soc.68.1306.(1946).
- 6. Sen and Basu, .Am. Chem. Soc. 36.807.(1959).
- 7. Saftien et al ,Ger.Patent 942507;C.A1759(1959)
- 8. Gustavson, J.Prakt. Chem., 37, 108 (1883).
- 9. Kohler, T. Am. Chem. Soc.24, 385 (1900).
- 10. Meerwin, Ann.455, 277 (1927).
- 11. S.Bhagat, R.Sharma, D.M. Swawant, L.Sharma "LiOH-H2O as a novel dual activation catalyst for highly efficient and easy synthesis of 1,3-diaryl-2-propenones by Claisen-Schmidt condensation under mild condensation," Journal of Molecular Catalysis A, vol. 244. No 1-2,pp 20-24, 2006.
- 12. Raval, A.A. Shah, N.M J Org. Chem., 1975, 22, 305.
- 13. A.N.Patange, U.M. Yadav, P.A. Desai, International Letters of Chemistry, Physics and Astronomy, 25 May 2015, Vol.52(2015) pp 22-27.
- 14. 15. A.N Patange, U.M Yadav, P.A. Desai, P.U Singare, In world scientific News, 11 May 2015, WSN 4 (2015) 32-43 EISSN 2392-2192
- 15. A.N Patange, Orient. J. Chem. Vol. 33(1) 430-438, (2017)

